Dissemin is shutting down on January 1st, 2025

Published in

Springer, Brain Structure and Function, 6(220), p. 3101-3111, 2014

DOI: 10.1007/s00429-014-0845-2

Links

Tools

Export citation

Search in Google Scholar

Working memory training impacts the mean diffusivity in the dopaminergic system

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dopaminergic transmission plays a critical role in working memory (WM). Mean diffusivity (MD) is a sensitive and unique neuroimaging tool for detecting microstructural differences particularly in the areas of the dopaminergic system. Despite previous investigation of the effects of WM training (WMT) on dopamine receptor binding potentials, the effects of WMT on MD remain unknown. In this study, we investigated these effects in young adult subjects who either underwent WMT or received no intervention for 4 weeks. Before and after the intervention or no-intervention periods, subjects underwent scanning sessions in diffusion-weighted imaging to measure MD. Compared with no intervention, WMT resulted in an increase in MD in the bilateral caudate, right putamen, left dorsolateral prefrontal cortex (DLPFC), right anterior cingulate cortex (ACC), right substantia nigra, and ventral tegmental area. Furthermore, the increase in performance on WMT tasks was significantly positively correlated with the mean increase in MD in the clusters of the left DLPFC and of the right ACC. These results suggest that WMT caused microstructural changes in the regions of the dopaminergic system in a way that is usually interpreted as a reduction in neural components.