Published in

Springer Verlag, Journal of Applied Electrochemistry, 5(40), p. 877-883

DOI: 10.1007/s10800-009-9919-x

Links

Tools

Export citation

Search in Google Scholar

The use of in-situ X-ray absorption spectroscopy in applied fuel cell research

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is known that polarization-sensitive backscattering images of different objects in turbid media may show better contrasts than usual intensity images. Polarimetric image contrast depends on both target and background polarization properties and typically involves averaging over groups of pixels, corresponding to given areas of the image. By means of numerical modelling we show that the experimental arrangement, namely, the shape of turbid medium container, the optical properties of the container walls, the relative positioning of the absorbing, scattering and reflecting targets with respect to each other and to the container walls, as well as the choice of the image areas for the contrast calculations, can strongly affect the final results for both linearly and circularly polarized light.