Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computational Materials Science, (109), p. 388-398

DOI: 10.1016/j.commatsci.2015.07.042

Links

Tools

Export citation

Search in Google Scholar

New finite element developments for the full field modeling of microstructural evolutions using the level-set method

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently a new numerical model devoted to the full field modeling of microstructural evolutions at the polycrystal scale has been proposed and validated [1]. The latter is based on a level set description of interfaces in a finite element framework. Firstly introduced to model 2D and 3D primary recrystallization with nucleaction [1] and [2], it has then been extended to consider the grain growth stage [3] and [4]. The ability of this approach to model the Zener pinning phenomenon without any assumption concerning the shape of second phase particles was also demonstrated [5]. This model has nevertheless an elevated computational cost and requires many numerical parameters whose calibration is not straightforward. In the present paper, some major improvements of the model which address these two points are discussed. A comparative study is also provided in order to illustrate the gains achieved in terms of computational efficiency and robustness.