Published in

Springer, Journal of Atmospheric Chemistry, 1(70), p. 1-18, 2013

DOI: 10.1007/s10874-013-9248-7

Links

Tools

Export citation

Search in Google Scholar

Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles

Journal article published in 2013 by Ka Man Chan, Dan Huang, Yong Jie Li ORCID, Man Nin Chan, John H. Seinfeld, Chak K. Chan
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Methyl vinyl ketone (MVK) is a key first-generation product from atmospheric isoprene photo-oxidation, especially under high-NOx conditions. In this work, acid-catalyzed reactions of gas-phase MVK with ammonium sulfate (AS), ammonium bisulfate (ABS), and sulfuric acid (SA) particles were investigated in a flow reaction system at relative humidity (RH) of 40% and 80%. Ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-TOFMS) and gas chromatography-mass spectrometry (GC-MS) were utilized to identify particle-phase products for developing the reaction mechanisms. High-order oligomers were detected when ABS and SA particles were used, while no oligomeric products were found when AS particles were used. Particle-phase oligomeric products were formed via i) acid-catalyzed aldol reaction with or without dehydration and/or ii) acid-catalyzed hydration followed by oligomerization. Reactions on SA particles yield more abundant and higher-order oligomers up to hexamers than on ABS particles. Moreover, aldol reaction occurred only on SA particles, but hydration followed by oligomerization occurred in both ABS and SA particles. The high RH condition with the same type of acidic particles was found to favor hydration and facilitate the subsequent oligomerization, while the low RH condition with the same type of acidic particles was found to favor aldol reaction with dehydration (aldol condensation). Overall, the findings suggest acidic particles can facilitate the formation of high-order oligomers in the particle phase, with particle acidity and RH as key factors. Hydration followed by oligomerization may be potentially important reasons under ambient conditions since atmospheric sulfate particles are usually acidic.