Published in

Elsevier, Applied Geochemistry, 8(25), p. 1221-1237

DOI: 10.1016/j.apgeochem.2010.05.007

Links

Tools

Export citation

Search in Google Scholar

Trace-element systematics of sediments in the Murray-Darling Basin, Australia: Sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity

Journal article published in 2010 by Samuel K. Marx ORCID, Balz S. Kamber
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A high-resolution dataset of trace element concentrations is presented for the Murray–Darling Basin, Australia, Australia’s most important river system. The data were obtained by solution quadrupole ICP-MS resulting in concentrations for 44 elements. Of these, 21 were determined with a long-term external precision of better than 1% and a further 13 at a precision better than 2%. Trace element maps for the surface sediments constructed from such high precision data reveal small but coherent variations in the four major sub-catchments of the basin, even in ratios of elements with very similar geochemical behaviour, such as Y/Ho, Nb/Ta and Zr/Hf. The origin of these chemical fingerprints of drainage systems are discussed in terms of the geochemical character of the upper continental crust. The potential of trace element maps for palaeo-environmental and climatic reconstruction is then illustrated. First, a sample of dust collected in a trap located in the far southeastern corner of the study area is used to pinpoint the location of the dust source. Next the fine-scale change in down-stream alluvial sediment chemistry is analysed to estimate the importance of sediment contribution from tributaries with a view to reconstructing river flow dynamics. Finally, the chemistry of dune sediments is compared with surrounding floodplain alluvium to estimate relative age of deposition. These examples demonstrate that in low-elevation river systems, such as the Murray–Darling Basin, extended trace element maps of sediment offer substantially more applications than radiogenic isotope data alone.