Published in

Wiley, Chemistry - A European Journal, 31(17), p. 8648-8656, 2011

DOI: 10.1002/chem.201100804

Links

Tools

Export citation

Search in Google Scholar

Spectroscopic Investigation of Heterogeneous Ziegler-Natta Catalysts: Ti and Mg Chloride Tetrahydrofuranates, Their Interaction Compound, and the Role of the Activator

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

X-ray powder diffraction (XRPD), Infrared, Raman, and UV/Vis spectroscopy have been used to investigate the structural, vibrational, and optical properties of Ti and Mg chloride tetrahydrofuranates as precursors of heterogeneous Ziegler-Natta catalysts for polyethylene production; as well as their interaction compound (pro-catalyst) and the final catalyst obtained after interaction with the AlR(3) activator. Although the structure of the precursors and of the pro-catalyst were well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the nu(M-Cl) region; whereas UV/Vis spectroscopy gave the direct proof on both the formal oxidation state and the coordination environment of the active Ti sites. Those presented herein are among the first direct experimental data on the structure of the active Ti sites in Ziegler-Natta catalysts, and can be used to validate the many computational studies that have been increasing exponentially in the last few decades.