Published in

Wiley, Laser and Photonics Reviews, 6(8), p. 924-932, 2014

DOI: 10.1002/lpor.201400081

Links

Tools

Export citation

Search in Google Scholar

Thick junction broadband organic photodiodes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inorganic semiconductor-based broadband photodetectors are ubiquitous in imaging technologies such as digital cameras and photometers. Herein a broadband organic photodiode (OPD) that has performance metrics comparable or superior to inorganic photodiodes over the same spectral range is reported. The photodiode with an active layer comprised of a poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl-C71-butyric acid methyl ester bulk heterojunction blend had a dark current < 1 nA/cm2, specific detectivity of ∼1013 Jones, reverse bias −3 dB frequency response of 100 kHz to 1 MHz, and state-of-the-art Linear Dynamic Range for organic photodiodes of nine orders of magnitude (180 dB). The key to these performance metrics was the use of a thick junction (700 nm), which flattened the spectral response, reduced the dark current and decreased performance variations. The strategy also provides a route to large area defect free “monolithic” structures for low noise integrated photo-sensing, position determination, or contact, non-focal imaging.