Published in

Springer Verlag, Journal of Chemical Ecology, 4(23), p. 1003-1023

DOI: 10.1023/b:joec.0000006385.70652.5e

Links

Tools

Export citation

Search in Google Scholar

Attraction of colorado potato beetle to herbivore-damaged plants during herbivory and after its termination.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Large, undamaged potato plants (> 60 cm, 5-6 weeks old) attract the Colorado potato beetle (Leptinotarsa decemlineata), but small potato plants (15-25 cm high, 2-3 weeks old) do not. However, small plants become attractive to CPB when they are damaged. Mechanical damage inflicted with scissors results in short-term (lasting less than 15 min) attraction, while more severe damage with carborundum powder results in a longer lasting attraction (at least 1 hr), CPB adults are also attracted to small plants infested with CPB and Spodoptera exigua larvae. After the larvae had been removed for 50 min following a short duration (30 min) of feeding, CPB adults were no longer attracted to the plants. However, when CPB larvae had been removed after they had fed for 60-90 min, the plants were somewhat attractive to the beetles, although significantly less than they had been when the larvae were feeding. Attraction increased with time after feeding ceased. Furthermore, beetles were strongly attracted to plants 50 min after larvae were removed when the plants had been fed upon by larvae for 18-24 hr. Thus it appears that there are two stages of attraction, first, to volatiles released directly from the wound site, and second, to volatiles that are induced in response to herbivory. Chemical analyses of the headspace of infested potato plants show that infestation results in the emission of a mixture of chemicals that is qualitatively quite similar to that emitted by undamaged plants. The major components of the mixture are that emitted by undamaged plants. The major components of the mixture are terpenoids and fatty acid derivatives such as aldehydes and alcohols. The emission rate of some of these chemicals declines after removal of the beetles, while the emission rate of other chemical:, increases with the duration of beetle feeding and remains at a high level even after removal of the beetles. Thus, the composition of the mixture changes temporally during and after herbivore feeding, which may explain the recorded behavior of the beetles.