Published in

American Society for Microbiology, Journal of Bacteriology, 9(175), p. 2516-2522, 1993

DOI: 10.1128/jb.175.9.2516-2522.1993

Links

Tools

Export citation

Search in Google Scholar

Intragenic recombination and a chimeric outer membrane protein in the relapsing fever agent Borrelia hermsii.

Journal article published in 1993 by Todd Kitten, Adrian V. Barrera, Alan G. Barbour ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The spirochete Borrelia hermsii, a relapsing fever agent, evades the host's immune response through multiphasic antigenic variation. Antigen switching results from sequential expression of genes for serotype-specific outer membrane proteins known as variable major proteins (Vmp's); of the 25 serotypes that have been identified for the HS1 strain, serotypes 7 and 21 have been studied in greatest detail. In the present study, an atypical variant was predominant in the relapse from a serotype 21 infection in mice; relapse cells were bound by monoclonal antibodies specific for Vmp21 as well as antibodies specific for Vmp7. In Western blots (immunoblots), the variant had a single Vmp that was reactive with monoclonal antibodies representing both serotypes. The gene encoding this Vmp, vmp7/21, was cloned and characterized by restriction mapping and sequence analysis to determine the likely recombination event. Whereas the 5' end of vmp7/21 was identical to that of vmp21, its 3' end and flanking sequences were identical to the 3' end of vmp7. Unlike other vmp genes examined thus far, the vmp7/21 gene existed only in an expressed form; a silent, storage form of the gene was not detected. We conclude that the vmp7/21 gene was created by an intragenic recombination between the formerly expressed vmp21 gene and a silent vmp7 gene. This finding suggests that the lack of cross-reactivity between variants, which is usually observed, results from immunoselection against variants possessing chimeric Vmp's rather than from a switching mechanism that excludes partial gene replacements.