Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 4(9), p. n/a-n/a, 2008

DOI: 10.1029/2007gc001651

Links

Tools

Export citation

Search in Google Scholar

<sup>238</sup>U‐<sup>230</sup>Th‐<sup>226</sup>Ra‐<sup>210</sup>Pb‐<sup>210</sup>Po, <sup>232</sup>Th‐<sup>228</sup>Ra, and <sup>235</sup>U‐<sup>231</sup>Pa constraints on the ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04003, doi:10.1029/2007GC001651. ; We report 238U-230Th-226Ra-210Pb-210Po, 232Th-228Ra and 235U-231Pa measurements for a suite of 14 geologically and geochemically well-characterized basaltic samples from the Samoan volcanoes Vailulu'u, Malumalu, and Savai'i. Maximum eruption ages based on the presence of parent-daughter disequilibria indicate that Vailulu'u is magmatically productive with young lavas ( 1 indicates that garnet is required as a residual phase in the magma sources for all these lavas. The large range of (238U/232Th) and (230Th/232Th) is attributed to long-term source variation. The Samoan basalts are all alkaline basalts and show significant 230Th and 231Pa excesses but limited variability, indicating that they have been derived by small but similar extents of melting. Their (230Th/238U), (231Pa/235U) and Sm/Nd fractionation are consistent with correlations among other ocean island basalt suites (particularly Hawaii) which show that (230Th/238U) and (231Pa/235U) of many OIBS can be explained by simple time-independent models. Interpretation of the 226Ra data requires time-dependent melting models. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Samoan basalts. Several young samples from the Vailulu'u summit crater also exhibit significant 210Pb deficits that reflect either shallow magmatic processes or continuous magma degassing. In both cases, decadal residence times are inferred from these 210Pb deficits. The young coeval volcanism on Malumalu and Vailulu'u suggests the Samoa hot spot is currently migrating to the northeast due to dynamic interaction with the Tonga slab. ; Support for this research was provided by NSF grants EAR-9909473 (KWWS), EAR-0509891 (SRH), EAR- 0609670 (MKR) and EAR-0504362 (MKR).