Published in

Elsevier, Deep Sea Research Part II: Topical Studies in Oceanography, 14-15(55), p. 1594-1604

DOI: 10.1016/j.dsr2.2008.04.013

Links

Tools

Export citation

Search in Google Scholar

Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2 experiments

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1594-1604, doi:10.1016/j.dsr2.2008.04.013. This paper presents results on tracer experiments using 13C and 15N to estimate uptake rates of dissolved inorganic carbon (DIC) and nitrogen (DIN). Experiments were carried out at station K2 (47°N, 161°E) in the NW Pacific subarctic gyre during July-August 2005. Our goal was to investigate relationships between new and export production. New production was inferred from the tracer experiments using the f ratio concept (0-50m); while export production was assessed with neutrally buoyant sediment traps (NBSTs) and the e ratio concept (at 150m). During trap deployments, K2 was characterized both by changes in primary production (523 to 404 mg C m-2 d-1), new production (119 to 67 mg C m-2 d-1), export production (68 to 24 mg C m-2 d-1) and phytoplankton composition (high to low proportion of diatoms). The data indicate that 17 to 23% of primary production is exportable to deeper layers (f ratio) but only 6 to 13% collected as a sinking particle flux at 150m (e ratio). Accordingly, > 80% of the carbon fixed by phytoplankton would be mineralized in the upper 50m (1 – f), while < 11% would be within 50-150m (f – e). DIN uptake flux amounted to 0.5 mM m-2 h-1, which was equivalent to about 95% particulate nitrogen (PN) remineralized and/or grazed within the upper 150 m. Most of the shallow PN remineralization occurred just above the depth of the deep chlorophyll maximum (DCM), where a net ammonium production was measured. Below the DCM, while nitrate uptake rates became negligible because of light limitation, ammonium uptake did continue to be significant. The uptake of ammonium by heterotrophic bacteria was estimated to be 14-17% of the DIN assimilation. Less clear are the consequences of this uptake on the phytoplankton community and biogeochemical processes, e.g. new production. It was suggested that competition for ammonium could select for small cells and may force large diatoms to use nitrate. This implies that under Fe stress as observed here, ammonium uptake is preferred and new production progressively suppressed despite the surplus of nitrate. This research was supported by the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as the US National Science Foundation programs in Chemical and Biological Oceanography.