Published in

Elsevier, NeuroImage, 2(59), p. 1429-1440, 2012

DOI: 10.1016/j.neuroimage.2011.08.049

Links

Tools

Export citation

Search in Google Scholar

Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by Regional Homogeneity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Alzheimer's disease (AD), the most prevalent cause of dementia in the elderly, is characterized by progressive cognitive and intellectual deficits. Most patients with mild cognitive impairment (MCI) are thought to be in a very early stage of AD. Resting-state functional magnetic resonance imaging reflects spontaneous brain activities and/or the endogenous/background neurophysiological process of the human brain. Regional Homogeneity (ReHo) can provide a fast method for mapping regional activity across the whole brain. Little has been previously published about where or how spontaneous activity differs between MCI and AD, although many previous fMRI studies have shown that the activity pattern is altered in MCI/AD. In the present study, we first used the ReHo method to explore differences in regional spontaneous activities throughout the whole brain between normal controls (NC) and people with MCI and with AD. A one-way ANOVA was performed to determine the regions in which the ReHo differs between the three groups, and then a post hoc analysis was performed to evaluate differences in the pattern among the three groups. Finally a correlation analysis was done between the ReHo index of these regions and clinical variables in order to evaluate the relationship between ReHo and cognitive measures in the AD and MCI groups. An exploratory classification analysis also demonstrated that ReHo measures were able to correctly separate subjects in 71.4% of the cases. Altered brain spontaneous activations were found in the medial prefrontal cortex, the bilateral posterior cingulate gyrus/precuneus and the left inferior parietal lobule (IPL) in both MCI and AD. In MCI, the ReHo index in the left IPL was higher than that of the NC, which could indicate the presence of a compensatory mechanism in MCI. More obviously, the correlation analysis indicated that the lower the memory and other cognitive abilities, the lower the ReHo in patients with MCI and AD. Combining our findings with the results in earlier studies, we propose that the spontaneous activity pattern in the resting state could potentially be used as a clinical marker for MCI/AD.