Published in

Elsevier, Solid State Nuclear Magnetic Resonance, 1(35), p. 32-36, 2009

DOI: 10.1016/j.ssnmr.2008.11.002

Links

Tools

Export citation

Search in Google Scholar

Two-dimensional 43Ca–1H correlation solid-state NMR spectroscopy

Journal article published in 2009 by Alan Wong, Danielle Laurencin, Ray Dupree ORCID, Mark E. Smith
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Calcium-43 (nuclear spin, S = 7/2) is an NMR insensitive low-gamma quadrupolar nucleus and up until recently only one-dimensional solid-state Ca-43 NMR spectra have been reported. Through-space correlation experiments are challenging between spin-1/2 and low-gamma quadrupolar nuclei because of the intrinsically weak dipolar interaction and the often-low natural abundance of the quadrupolar nucleus. Rotary-resonance recoupling (R-3) has recently been used to re-introduce hetero-nuclear dipolar interactions for sensitive high-gamma quadrupolar nuclei, but has not yet been applied in the case of low-gamma half-integer quadrupolar nuclei. Here an effective and robust 2D H-1-Ca-43 NMR correlation experiment combining the R-3 dipole-recoupling scheme with 2D HMQC is presented. It is demonstrated that the weak Ca-43-H-1 dipolar coupling in hydroxyapatite and oxy-hydroxyapatite can be readily re-introduced and that this recoupling scheme is more efficient than conventional cross-polarization transfer. Moreover, three Ca-43-H-1 dipolar coupled calcium environments are clearly resolved in the structurally unknown oxy-hydroxyapatite. This local information is not readily available from other techniques such as powder XRD and high resolution electron microscopy. R-3-HMQC is also a desirable experiment because the set-up is simple and it can be applied using conventional multi-resonance probes. (C) 2008 Elsevier Inc. All rights reserved.