Published in

Elsevier, Journal of Magnetic Resonance, 2(197), p. 229-236

DOI: 10.1016/j.jmr.2009.01.005

Links

Tools

Export citation

Search in Google Scholar

Separation of isotropic chemical and second-order quadrupolar shifts by multiple-quantum double rotation NMR

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quanturn z-filtered pulse sequence and Subsequently sheared along both the nu(1) and nu(2) dimensions. The application of this method is demonstrated for both crystalline (RbNO3) and amorphous samples (vitreous B2O3). The existence of the two rubidium isotopes (Rb-85 and Rb-87) allows comparison of results for two nuclei with different spins (I = 3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for Rb-87 in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, P-Q. For vitreous B2O3, the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined-information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening. (C) 2009 Elsevier Inc. All rights reserved.