Published in

Wiley, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2(78B), p. 222-229, 2006

DOI: 10.1002/jbm.b.30459

Links

Tools

Export citation

Search in Google Scholar

Human microvascular endothelial cellular interaction with atomic N-doped DLC compared with Si-doped DLC thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This article reports results of endothelial cell interaction with atom beam source N-doped a-C:H (diamond-like carbon, DLC) as it compares with that of Si-doped DLC thin films. The RF plasma source exhibits up to 40% N-dissociation and N-atomic fluxes of similar to 0.85 x 10(18) atoms/s, which ensures better atomic nitrogen incorporation. Two different types of nitrogen species (with and without the use of sweep plates to remove charged ions) were employed for nitrogen doping. The number of attached endothelial cells is highest on Si-DLC, followed by the N-DLC (where the sweep plates were used to remove ions), the N-DLC (without the use of sweep plates), undoped DLC, and finally the uncoated sample. The contact angle values for these films suggest that water contact angle is higher in the atomic nitrogen neutral films and Si-DLC films compared to the ionized-nitrogen specie doped films and undoped DLC thin films, suggesting that the more hydrophobic films,semiconducting films, and film with relieved stress have better interaction with human microvascular endothelial cells. It seems evident that N-doping increases the Raman I-D/I-G ratios, whereas N-neutral doping decreases it slightly and Si-doping decreases it evenfurther. In this study, lower Raman I-D/I-G ratios are associated with increased sp(3)/sp(2) ratio, an increased H concentration, photoluminescence intensity, and a higher endothelial cellular adhesion. These investigations could be relevant to biocompatibility assessment of nanostructured biomaterials and tissue engineering. (c) 2006 Wiley Periodicals. Inc.