Published in

Taylor and Francis Group, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 3(135), p. 249-262, 2001

DOI: 10.1080/11263500112331350890

Links

Tools

Export citation

Search in Google Scholar

Evidence for a C4 NADP-ME photosynthetic pathway in Vetiveria zizanioides Stapf

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Leaf anatomy (light and transmission electron microscopy), immunogold localization of Rubisco, photosynthetic enzyme activities, CO2 assimilation and stomatal conductance were studied in Vetiveria zizanioides Stapf., a graminaceous plant native to tropical and subtropical areas, and cultivated in temperate climates (Northwestern Italy). Leaves possess a NADP-ME Kranz anatomy with bundle sheath cells containing chloroplasts located in a centrifugal position. Dimorphic chloroplasts were also observed; they are agranal and starchy in the bundle sheath and granal starchless in the mesophyll cells. Rubisco immunolocalization studies indicate that this enzyme occurs solely in the bundle sheath chloroplasts. Pyruvate-orthophosphate dikinase, NADP-dependent malate dehydrogenase (NADP-MDH), NADP-dependent malic enzyme (NADP-ME), PEP-carboxykinase and NAD-dependent malic enzyme (NAD-ME) activities were determined. Enzyme activity and some kinetic properties of NADP-ME and NADP-MDH as well as CO2 compensation point and stomatal conductance values were calculated indicating a NADP-ME C4 photosynthetic pathway. Biochemical and structural results indicate that V. zizanioides belongs to the C4 NADP-ME variant. This plant appears to be well adapted to the varying environmental conditions typical of temperate climates, by retaining high enzyme activities and a low CO2 compensation point.