Published in

Elsevier, Mitochondrion, 5(12), p. 520-532, 2012

DOI: 10.1016/j.mito.2012.07.106

Links

Tools

Export citation

Search in Google Scholar

Molecular base of biochemical complex I deficiency.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The oxidative phosphorylation (OXPHOS) system, consisting of five enzyme complexes (I-V) together with 2 electron carriers, has an important role in the energy metabolism of the cell. With 45 subunits, complex I is the first and largest complex of the respiratory chain. It is under bigenomic control and a proper interaction between the mitochondrial and the nuclear genome is important for a good biogenesis and functioning of the complex. Isolated complex I deficiency is the most frequently diagnosed form of mitochondrial disorders caused by the disturbance of the OXPHOS system. It has a wide clinical variety and, at present, in many patients the underlying genetic cause of the complex I deficiency is still not known. In this review, the role of complex I in the oxidative phosphorylation and the localization and function of the different complex I subunits will be described. Furthermore, a brief overview of the assembly process and biochemical studies, performed when a patient is suspected of a mitochondrial disorder is given. Finally, the present knowledge for molecular base of complex I deficiency is described and the findings in a research cohort of patients with complex I deficiency are reported. Identifying new genes encoding proteins involved in complex I biogenesis is challenging and in the near future new powerful techniques will make high throughput screening possible. Progress in elucidating the genetic defect causing complex I deficiencies is important for a better genetic counseling, prenatal diagnostic possibilities and further development of new treatment strategies to cure the complex I deficiencies in the future.