Elsevier, Journal of Materials Processing Technology, 1(212), p. 90-99
DOI: 10.1016/j.jmatprotec.2011.08.009
Full text: Download
In laser forming, thermally induced strains transverse to the laser scan line vary with depth in the material and contribute most significantly to the desired deformation. The through-thickness transverse residual strain distribution was measured by neutron diffraction in laser-formed low carbon steel and aluminium alloy specimens. The specimens were formed with a wide range of laser line energies covering the temperature gradient mechanism (TGM) and shortening or upsetting mechanism (SM), and for single and multi-pass forming (up to 3 laser passes). Below the saturation line energy where the TGM dominates, the gradient of the through-thickness strain distribution was found to increase with increasing line energy and number of laser passes; the gradient decreased again at line energies above the saturation line energy where the efficiency of the TGM decreases. Iterative laser forming can be applied to reduce weld-induced distortions. The peak longitudinal strain measured in the weld seam of a specimen that had been straightened by iterative laser forming was also significantly reduced.(C) 2011 Elsevier B.V. All rights reserved.