Published in

American Geophysical Union, Geophysical Research Letters, 23(41), p. 8438-8444, 2014

DOI: 10.1002/2014gl061574

Links

Tools

Export citation

Search in Google Scholar

Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8438–8444, doi:10.1002/2014GL061574. ; Along the continental margins, rivers and submarine groundwater supply nutrients, trace elements, and radionuclides to the coastal ocean, supporting coastal ecosystems and, increasingly, causing harmful algal blooms and eutrophication. While the global magnitude of gauged riverine water discharge is well known, the magnitude of submarine groundwater discharge (SGD) is poorly constrained. Using an inverse model combined with a global compilation of 228Ra observations, we show that the SGD integrated over the Atlantic and Indo-Pacific Oceans between 60°S and 70°N is (12 ± 3) × 1013 m3 yr−1, which is 3 to 4 times greater than the freshwater fluxes into the oceans by rivers. Unlike the rivers, where more than half of the total flux is discharged into the Atlantic, about 70% of SGD flows into the Indo-Pacific Oceans. We suggest that SGD is the dominant pathway for dissolved terrestrial materials to the global ocean, and this necessitates revisions for the budgets of chemical elements including carbon. ; This work was supported by the Ministry of Oceans and Fisheries, Korea, through the Korea Institute of Marine Science and Technology (KIMST) (20120176) and National Research Foundation (NRF) of Korea (2013R1A2A1A05004343 and 2013R1A1A1058203). Charette and Moore's contributions were supported by the US National Science Foundation through the GEOTRACES project.