Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Entomologia Experimentalis et Applicata, 1(111), p. 7-17, 2004

DOI: 10.1111/j.0013-8703.2004.00140.x

Links

Tools

Export citation

Search in Google Scholar

Initiation of fungal epizootics in diamondback moth populations within a large field cage: proof of concept for auto-dissemination

Journal article published in 2004 by R. A. Vickers, M. J. Furlong ORCID, A. White, J. K. Pell
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM-infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non-infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto-dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.