Published in

Wiley Open Access, FASEB Journal, 6(26), p. 2639-2647, 2012

DOI: 10.1096/fj.11-202820

Links

Tools

Export citation

Search in Google Scholar

Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

abstractIn patients with glioblastomas, vascular endothelial growth factor (VEGF) is a key mediator of tumor-associated angiogenesis. Glioblastomas are notorious for their capacity to induce neovascularization, driving continued tumor growth. Here we report that miR-125b is down-regulated in glioblastoma-associated endothelial cells, resulting in increased expression of its target, myc-associated zinc finger protein (MAZ), a transcription factor that regulates VEGF. The down-regulation of miR-125b was also observed on exposure of endothelial cells to glioblastoma-conditioned medium or VEGF, resulting in increased MAZ expression. Further analysis revealed that inhibition of MAZ accumulation by miR-125b, or by MAZ-specific shRNAs, attenuated primary human brain endothelial cell migration and tubule formation in vitro, phenomena considered to mimick angiogenic processes in vitro. Moreover, MAZ expression was elevated in brain blood vessels of glioblastoma patients. Altogether these results demonstrate a functional feed-forward loop in glioblastomarelated angiogenesis, in which VEGF inhibits the expression of miR-125b, resulting in increased expression of MAZ, which in its turn causes transcriptional activation of VEGF. This loop is functionally impeded by the VEGF receptor inhibitor vandetanib, and our results may contribute to the further development of inhibitors of tumor-angiogenesis.text