Published in

Springer Verlag, Pflügers Archiv European Journal of Physiology, 5(460), p. 863-873

DOI: 10.1007/s00424-010-0866-5

Links

Tools

Export citation

Search in Google Scholar

Changes in contractile properties of skinned single rat soleus and diaphragm fibres after chronic hypoxia.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hypoxia may be one of the factors underlying muscle dysfunction during ageing and chronic lung and heart failure. Here we tested the hypothesis that chronic hypoxia per se affects contractile properties of single fibres of the soleus and diaphragm muscle. To do this, the force-velocity relationship, rate of force redevelopment and calcium sensitivity of single skinned fibres from normoxic rats and rats exposed to 4 weeks of hypobaric hypoxia (410 mmHg) were investigated. The reduction in maximal force (P(0)) after hypoxia (p=0.031) was more pronounced in type IIa than type I fibres and was mainly attributable to a reduction in fibre cross-sectional area (p=0.044). In type IIa fibres this was aggravated by a reduction in specific tension (p=0.001). The maximal velocity of shortening (V (max)) and shape of the force velocity relation (a/P(0)), however, did not differ between normoxic and hypoxic muscle fibres and the reduction in maximal power of hypoxic fibres (p=0.012) was mainly due to a reduction in P(0). In conclusion, chronic hypoxia causes muscle fibre dysfunction which is not only due to a loss of muscle mass, but also to a diminished force generating capacity of the remaining contractile material. These effects are similar in the soleus and diaphragm muscle, but more pronounced in type IIa than I fibres.