Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Environmental Science and Technology, 10(45), p. 4399-4406, 2011

DOI: 10.1021/es1030432

Links

Tools

Export citation

Search in Google Scholar

Assessing wastewater micropollutant loads with Approximate Bayesian Computations

Journal article published in 2011 by Jörg Rieckermann ORCID, Jose Anta, Andreas Scheidegger ORCID, Christoph Ort ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wastewater production, like many other engineered and environmental processes, is inherent stochastic in nature and requires the use of complex stochastic models, for example, to predict realistic patterns of down-the-drain chemicals or pharmaceuticals and personal care products. Up until now, a formal method of statistical inference has been lacking for many of those models, where explicit likelihood functions were intractable. In this Article, we investigate Approximate Bayesian Computation (ABC) methods to infer important parameters of stochastic environmental models. ABC methods have been recently suggested to perform model-based inference in a Bayesian setting when model likelihoods are analytically or computationally intractable and have not been applied to environmental systems analysis or water quality modeling before. In a case study, we investigate the performance of three different algorithms to infer the number of wastewater pulses contained in three high-resolution data series of benzotriazole and total nitrogen loads in sewers. We find that all algorithms perform well and that the uncertainty in the inferred number of corresponding wastewater pulses varies between 6% and 28%. In our case, the results are more sensitive to substance characteristics than to catchment properties. Although the application of ABC methods requires careful tuning and attention to detail, they have a great general potential to update stochastic model parameters with monitoring data and improve their predictive capabilities. © 2011 American Chemical Society.