National Academy of Sciences, Proceedings of the National Academy of Sciences, 25(104), p. 10524-10529, 2007
Full text: Download
Ecologists have long been intrigued by the factors that control the pattern of biodiversity, i.e., the distribution and abundance of species. Previous studies have demonstrated that coexisting species partition their resources and/or that the compositional similarity between communities is determined by environmental factors, lending support to the niche-assembly model. However, no attempt has been made to test whether the relative amount of resources that reflects relative niche space controls relative species abundance in communities. Here, we demonstrate that the relative abundance of butterfly species in island communities is significantly related to the relative biomasses of their host plants but not to the geographic distance between communities. In the studied communities, the biomass of particular host plant species positively affected the abundance of the butterfly species that used them, and consequently, influenced the relative abundance of the butterfly communities. This indicated that the niche space of butterflies (i.e., the amount of resources) strongly influences butterfly biodiversity patterns. We present this field evidence of the niche-apportionment model that propose that the relative amount of niche space explains the pattern of the relative abundance of the species in communities.