Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Molecular Ecology, 23(17), p. 4978-4991, 2008

DOI: 10.1111/j.1365-294x.2008.03975.x

Links

Tools

Export citation

Search in Google Scholar

Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The origin and meaning of echolocation call frequency variation within rhinolophid bats is not well understood despite an increasing number of allopatric and sympatric examples being documented. A bimodal distribution of mean regional call frequency within the Okinawa-jima Island population of Rhinolophus cornutus pumilus (Rhinolophidae) provided a unique opportunity to investigate geographic call frequency variation early in its development. Individual resting echolocation frequencies, partial mitochondrial DNA D-loop sequences and genotypes from six microsatellite loci were obtained from 288 individuals in 11 colonies across the entire length of the island, and nearby Kume-jima Island. Acoustic differences (5–8 kHz) observed between the north and south regions have been maintained despite evidence of sufficient nuclear gene flow across the middle of the island. Significant subdivision of maternally inherited D-loop haplotypes suggested a limitation of movement of females between regions, but not within the regions, and was evidence of female philopatry. These results support a 'maternal transmission' hypothesis whereby the difference in the constant frequency (CF) component between the regions is maintained by mother–offspring transmission of CF, the restricted dispersal of females between regions and small effective population size. We suggest that the mean 5–8 kHz call frequency difference between the regions might develop through random cultural drift. ; Yoshino Hajime, Armstrong Kyle N. Izawa Masako, Yokoyama Jun and Kawata Masakado