Elsevier, Journal of Theoretical Biology, 2(259), p. 209-218
DOI: 10.1016/j.jtbi.2009.02.025
Full text: Download
Both ecological stoichiometry and the evolution of traits for energetic interactions such as prey protection and predatory efficiency are considered to be important aspects affecting population dynamics. However, no attempt has been made to examine the effect of the evolution of traits relating to stoichiometry. This study first examined the effects of the evolution of nutrient utilization traits (i.e., the minimum nutrient content of prey, the maximum nutrient uptake affinity of prey and the nutrient contents of predators) on population dynamics in a plankton community. When the evolution of these traits was assumed, the range of the nutrient loading conditions where the system became unstable was smaller than when the evolution was not assumed, but the range of the conditions for zooplankton extinction became larger. Furthermore, when the trade-offs (i.e. genetic correlation between the traits) were assumed, the system rarely became extinct and the range of the nutrient loading conditions where the system became stable became larger through evolution. Stable dynamics were caused by increasing uptake affinity through evolution, and zooplankton extinction was caused by decreasing the minimum content of limiting nutrients. Thus, our results suggest that the evolution of traits relating to stoichiometry can affect the dynamics of the systems, and the outcomes the dynamics change greatly depend on which traits can evolve.