Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Neurophysiology, 4(111), p. 768-776, 2014

DOI: 10.1152/jn.00595.2013

Links

Tools

Export citation

Search in Google Scholar

Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions

Journal article published in 2013 by Killian Bouillard, Marc Jubeau, Antoine Nordez ORCID, Francois Hug ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present study aimed to investigate the effects of selective fatigue (i.e., one muscle of the quadriceps) on load sharing strategies during submaximal knee extensions. Shear wave elastography was used to measure muscle shear elastic modulus, as this is considered to be an index of individual muscle force. Sixteen participants attended two experimental sessions that each involved six 10-s knee extensions at 20% of maximal voluntary contraction (MVC) followed by a sustained submaximal isometric knee extension at 20% of MVC, until task failure (Tlim). Between the 10-s contractions and Tlim, participants were required to rest (5 min) for the control session or underwent 5 min of electromyostimulation (EMS) on vastus lateralis (EMS session). Compared with the control session, vastus lateralis shear elastic modulus values were significantly lower after EMS considering both the start of Tlim (54.6 ± 11.8 vs. 68.4 ± 19.2 kPa; P = 0.011) and the entire Tlim contraction (59.0 ± 14.0 vs. 74.4 ± 20.3 kPa; P = 0.019). However, no significant differences were observed for the other recorded muscles (vastus medialis and rectus femoris; both P = 1), i.e., different patterns of changes were found between participants. In conclusion, this study demonstrates that prefatiguing a single agonist muscle does not lead to a consistent redistribution of load sharing among the quadriceps muscles between individuals. These results suggest that the central nervous system does not use a common principle among individuals to control load sharing when neuromuscular fatigue occurs.