Published in

The Company of Biologists, Journal of Cell Science, 3(108), p. 935-946, 1995

DOI: 10.1242/jcs.108.3.935

Links

Tools

Export citation

Search in Google Scholar

Glycolipid Migration From the Apical to the Equatorial Subdomains of the Sperm Head Plasma-Membrane Precedes the Acrosome Reaction - Evidence for a Primary Capacitation Event in Boar Spermatozoa

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In order to extend the static information of immunolabelling sulphogalactolipids in fixed boar spermatozoa, a fluorescent sulphogalactolipid analogue, galactose(3-sulphate)-beta 1–1′[(N-lissamine rhodaminyl)-12-aminodode-canoyl]-sphingosine, was incorporated into plasma membranes of living spermatozoa and its lateral distribution over the sperm head was studied. The fluorescent lipid was enriched in the apical ridge subdomain of freshly ejaculated sperm cells. After sperm binding to the zona pellucida the lipid redistributed to the equatorial segment of the sperm surface. A similar shift occurred during capacitation in vitro with 2 mM CaCl2 or with 4% (w/v) bovine serum albumin. The desulphated derivative galactose-beta 1–1′[(N-lissamine rhodaminyl)-12-aminododecanoyl]-sphingosine was also incorporated into the plasma membrane of freshly ejaculated sperm cells and clearly stained the apical ridge subdomain and the (pre)-equatorial subdomains of the sperm heads. The desulphogalactolipid analogue showed a slightly faster migration to the equatorial segment of the sperm plasma membrane than did its sulphated counterpart. The measured fluorescence intensity distributions correlated linearly with the spatial probe distribution, which was checked by fluorescence lifetime imaging microscopy. The observed migration of the incorporated glycolipids precedes the acrosome reaction and is one of the underlying molecular events likely to be important in the process of sperm capacitation. The results of this study suggest that lipid phase segregation is an important driving force for the organization of the sperm head plasma membrane into subdomains.