Published in

Elsevier, Thin Solid Films, 1-2(426), p. 85-93

DOI: 10.1016/s0040-6090(03)00013-0

Links

Tools

Export citation

Search in Google Scholar

Diffusion-modified boride interlayers for chemical vapour deposition of low-residual-stress diamond films on steel substrates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The feasibility of using a boriding pretreatment for the chemical vapour deposition (CVD) of adherent, low-residual-stress diamond films on ferritic tool and AISI type 316 austenitic stainless steels was investigated. The steel samples were borided by means of a pack cementation process at a temperature of 950 8C using an interrupted thermal cycling process. Boriding of the alloy steels results in a very high surface hardness of approximately 3780 VHN due to the precipitation of alloy borides such as chromium boride in the predominantly FeB andyor Fe B case. The boriding conditions, and hence the microstructural state of the 2 as-borided steels, was found to have a strong influence on the diamond film characteristics, particularly on the adherence. Detailed characterisation of the as-borided steels, as well as the deposited diamond films and interlayer modification during the CVD process, is discussed based on scanning electron microscopy, X-ray diffraction and micro-Raman spectroscopy investigations. Under optimised conditions, adherent and continuous diamond films of good quality have been obtained on both the ferritic tool and austenitic stainless steels. In the case of borided surface structures without the presence of a FeB phase, diffusion-modified gradient microstructures were found to accommodate efficiently the high thermal stress expected between the steel substrate and the diamond film, resulting in low-residual-stress films. 2003 Elsevier Science B.V. All rights reserved.