Published in

Taylor and Francis Group, Connective Tissue Research, 1(49), p. 30-41

DOI: 10.1080/03008200701820443

Links

Tools

Export citation

Search in Google Scholar

Decorin transfection induces proteomic and phenotypic modulation in breast cancer cells 8701-BC

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Decorin is a prototype member of the small leucine-rich proteoglycan family widely distributed in the extracellular matrices of many connective tissues, where it has been shown to play multiple important roles in the matrix assembly process, as well as in some cellular activities. A major interest for decorin function concerns its role in tumorigenesis, as growth-inhibitor of different neoplastic cells, and potential antimetastatic agent. The aim of our research was to investigate wide-ranged effects of transgenic decorin on breast cancer cells. To this purpose we utilized the well-characterized 8701-BC cell line, isolated from a ductal infiltrating carcinoma of the breast, and two derived decorin-transfected clones, respectively, synthesizing full decorin proteoglycan or its protein core. The responses to the ectopic decorin production were examined by studying morphological changes, cell proliferation rates, and proteome modulation. The results revealed new important antioncogenic potentialities, likely exerted by decorin through a variety of distinct biochemical pathways. Major effects included the downregulation of several potential breast cancer biomarkers, the reduction of membrane ruffling, and the increase of cell-cell adhesiveness. These results disclose original aspects related to the reversion of malignant traits of a prototype of breast cancer cells induced by decorin. They also raise additional interest for the postulated clinical application of decorin.