Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 6(133), p. 1793-1798, 2010

DOI: 10.1021/ja109164t

Links

Tools

Export citation

Search in Google Scholar

Stereochemical elucidation of streptorubin B

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Streptorubin B is a structurally remarkable mem-ber of the prodiginine group of antibiotics produced by several actinobacteria, including the model organism Streptomyces coelicolor A3(2). Transannular strain within the pyrrolophane structure of this molecule causes restricted rotation that gives rise to the possibility of (diastereomeric) atropisomers. Neither the relative nor the absolute stereochemistry of streptorubin B is known. NOESY NMR experiments were used to define the relative stereochemistry of the major atropisomer of streptorubin B·HCl in solution as anti. We exploited this finding together with our knowledge of streptorubin B biosynthesis in S. coelicolor to determine the absolute stereochemistry of the anti atropisomer. 2-Undecylpyrrole stereoselectively labeled with deuterium at C-4′ was synthesized and fed to a mutant of S. coelicolor, which was unable to produce streptorubin B because it was blocked in 2-undecylpyrrole biosynthesis, and in which the genes responsible for the last two steps of streptorubin B biosynthesis were overexpressed. 1H and 2H NMR analysis of the stereoselectively deuterium-labeled streptorubin B·HCl produced by this mutasynthesis strategy allowed us to assign the absolute stereochemistry of the major (anti) atropisomer as 7′S. HPLC analyses of streptorubin B isolated from S. coelicolor on a homochiral stationary phase and comparisons with streptorubin B derived from an enantioselective synthesis showed that the natural product consists of an approximately 88:7:5 mixture of the (7′S, anti), (7′S, syn), and (7′R, anti) stereoisomers.