American Astronomical Society, Astrophysical Journal, 1(797), p. 34, 2014
DOI: 10.1088/0004-637x/797/1/34
Full text: Download
We present the results of a numerical study based on the analysis of the MUSIC-2 simulations, aimed at estimating the expected concentration-mass relation for the CLASH cluster sample. We study nearly 1400 halos simulated at high spatial and mass resolution, which were projected along many lines-of-sight each. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White, the generalised Navarro-Frenk-White, and the Einasto density profiles. We derive concentrations and masses from these fits and investigate their distributions as a function of redshift and halo relaxation. We use the X-ray image simulator X-MAS to produce simulated Chandra observations of the halos and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos which resemble the X-ray morphology of the CLASH clusters is composed mainly by relaxed halos, but it also contains a significant fraction of un-relaxed systems. For such a sample we measure an average 2D concentration which is ~11% higher than found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in 3D for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61. Simulated halos with X-ray morphologies similar to those of the CLASH clusters are affected by a modest orientation bias. ; Comment: 21 pages, 16 figures, 3 tables, submitted to ApJ