Published in

Wiley, Journal of Comparative Neurology, 3(486), p. 243-253, 2005

DOI: 10.1002/cne.20529

Links

Tools

Export citation

Search in Google Scholar

Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin sheaths, which surround neurites in the CNS. Previous studies in MS have described alterations in the citrullination of myelin basic protein, one of the main protein constituents of the myelin sheath. Here, we show that, also during the development of EAE in mice, hypercitrullination occurs in the areas of the spinal cord that show the highest degree of inflammation and that myelin basic protein and glial fibrillary acidic protein are among the hypercitrullinated proteins. We conclude that hypercitrullination of myelin proteins in the CNS is a common phenomenon in demyelinating disease. Hypercitrullination may cause conformational changes in proteins, so the affected proteins may be involved in the pathogenesis of CNS autoimmune disease by acting as autoreactive T-cell epitopes. This is the first report in which hypercitrullination of CNS proteins in EAE is described and in which proteins other than myelin basic protein are reported to be citrullinated during autoimmune-mediated CNS inflammation.