Published in

Society for Neuroscience, Journal of Neuroscience, 42(29), p. 13136-13146, 2009

DOI: 10.1523/jneurosci.0474-09.2009

Links

Tools

Export citation

Search in Google Scholar

Visual Impairment in the Absence of Dystroglycan

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ocular involvement in muscular dystrophy ranges from structural defects to abnormal electroretinograms. While the mechanisms underlying the abnormal retinal physiology in patients are not understood, it is thought that alpha-dystroglycan extracellular interactions are critical for normal visual function. Here we show that beta-dystroglycan anchors dystrophin and the inward rectifying K(+) channel Kir4.1 at glial endfeet and that disruption of dystrophin and potassium channel clustering in dystroglycan mutant mice is associated with an attenuation of the electroretinogram b-wave. Glial-specific inactivation of dystroglycan or deletion of the cytoplasmic domain of beta-dystroglycan was sufficient to attenuate the electroretinogram b-wave. Unexpectedly, deletion of the beta-dystroglycan cytoplasmic domain did not disrupt the laminar structure of the retina. In contrast to the role of alpha-dystroglycan extracellular interactions during early development of the CNS, beta-dystroglycan intracellular interactions are important for visual function but not the laminar development of the retina.