Published in

The Company of Biologists, Disease Models and Mechanisms, 11-12(3), p. 701-704, 2010

DOI: 10.1242/dmm.006296

Links

Tools

Export citation

Search in Google Scholar

Mouse models of cancer as biological filters for complex genomic data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Genetically and pathologically accurate mouse models of leukemia and lymphoma have been developed in recent years. Adoptive transfer of genetically modified hematopoietic progenitor cells enables rapid and highly controlled gain- and loss-of-function studies for these types of cancer. In this Commentary, we discuss how these highly versatile experimental approaches can be used as biological filters to pinpoint transformation-relevant activities from complex cancer genome data. We anticipate that the functional identification of genetic ‘drivers’ using mouse models of leukemia and lymphoma will facilitate the development of molecular diagnostics and mechanism-based therapies for patients that suffer from these diseases.