Published in

Elsevier, Sensors and Actuators A: Physical, (189), p. 108-116, 2013

DOI: 10.1016/j.sna.2012.08.036

Links

Tools

Export citation

Search in Google Scholar

Robust actuation of silicon MEMS using SMA wires integrated at wafer-level by nickel electroplating

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper reports on both the wafer-level fixation and electrical connection of pre-strained SMA wires to silicon MEMS using electroplating, and on the fabrication of the first Joule-heated Shape memory alloy (SMA) wire actuators on silicon. The integration method provides both high bond strength and electrical connections in one processing step, and it allows mass production of microactuators having high work density. SEM observation showed an intimate interconnection between the SMA wires and the silicon substrate. The variation of the actuators’ performance across the wafer was evaluated on three 4.5 mm × 1.8 mm footprint devices, proving repeatable results. The actuators showed a mean hot state deflection of 536 μm and a mean stroke of 354 μm at a low power consumption (less than 70 mW). One actuator was tested for m150 × 103 cycles, and it demonstrated a highly reliable long-term performance, showing neither material degradation, nor failure of the nickel anchors.