Published in

arXiv, 2009

DOI: 10.48550/arxiv.0911.1637

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(402), p. 1824-1840

DOI: 10.1111/j.1365-2966.2009.16010.x

Proceedings of High Time Resolution Astrophysics (HTRA) IV - The Era of Extremely Large Telescopes — PoS(HTRA-IV)

DOI: 10.22323/1.108.0045

Links

Tools

Export citation

Search in Google Scholar

Physical properties of IP Pegasi : an eclipsing dwarf nova with an unusually cool white dwarf

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We present high speed photometric observations of the eclipsing dwarf nova IP Peg taken with the triple-beam camera ULTRACAM mounted on the William Herschel Telescope. The primary eclipse in this system was observed twice in 2004, and then a further sixteen times over a three week period in 2005. Our observations were simultaneous in the Sloan u', g' and r' bands. By phase-folding and averaging our data we make the first significant detection of the white dwarf ingress in this system and find the phase width of the white dwarf eclipse to be 0.0935 +/- 0.0003, significantly higher than the previous best value of between 0.0863 and 0.0918. The mass ratio is found to be q = M2 /M1 = 0.48 +/- 0.01, consistent with previous measurements, but we find the inclination to be 83.8 +/- 0.5 deg, significantly higher than previously reported. We find the radius of the white dwarf to be 0.0063 +/- 0.0003 solar radii, implying a white dwarf mass of 1.16 +/- 0.02 solar masses. The donor mass is 0.55 +/- 0.02 solar masses. The white dwarf temperature is more difficult to determine, since the white dwarf is seen to vary significantly in flux, even between consecutive eclipses. This is seen particularly in the u'-band, and is probably the result of absorption by disc material. Our best estimate of the temperature is 10,000 - 15,000K, which is much lower than would be expected for a CV with this period, and implies a mean accretion rate of less than 5 times 10^-11 solar masses per year, more than 40 times lower than the expected rate. Comment: Accepted for publication in MNRAS. 19 pages with 11 figures