Published in

Oxford University Press, FEMS Microbiology Ecology, 3(88), p. 503-515, 2014

DOI: 10.1111/1574-6941.12315

Links

Tools

Export citation

Search in Google Scholar

Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizerRhodovulum iodosum- implications for Precambrian Fe(II) oxidation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Anoxygenic phototrophic Fe(II)-oxidizing bacteria (photoferrotrophs) are suggested to have contributed to the deposition of banded iron formations (BIFs) from seawater. However, most studies evaluating the contribution of photoferrotrophs to Precambrian Fe(II) oxidation have used freshwater and not marine strains. Therefore, we investigated the physiology and mineral products of Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum. Poorly crystalline Fe(III) minerals formed initially and transformed to more crystalline goethite over time. During Fe(II) oxidation, cell surfaces were largely free of minerals. Instead, the minerals were co-localized with EPS suggesting that EPS plays a critical role in preventing cell encrustation, likely by binding Fe(III) and directing precipitation away from cell surfaces. Fe(II) oxidation rates increased with increasing initial Fe(II) concentration (0.43-4.07 mM) under a light intensity of 12 μmol quanta m-2s-1. Rates also increased as light intensity increased (3-20 μmol quanta m-2s-1) while the addition of Si did not significantly change Fe(II) oxidation rates. These results elaborate on how the physical and chemical conditions present in the Precambrian ocean controlled the activity of marine photoferrotrophs, and confirm the possibility that such microorganisms could have oxidized Fe(II), generating the primary Fe(III) minerals that were then deposited to some Precambrian BIFs. This article is protected by copyright. All rights reserved.