Published in

SAGE Publications, Lupus, 5(17), p. 371-375, 2008

DOI: 10.1177/0961203308089990

Links

Tools

Export citation

Search in Google Scholar

Apoptosis in the pathogenesis of systemic lupus erythematosus.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease resulting from autoimmune responses against nuclear autoantigens. During apoptosis many lupus autoantigens congregate inside the cells and are susceptible to modifications. Modified nuclear constituents are considered foreign and dangerous. Therefore, apoptotic cells have to has to be efficiently removed to avoid the accumulation of apoptotic debris and the subsequently development of autoimmune responses. Hence, apoptosis and clearance of apoptotic cells/material are considered key processes in the aetiology of SLE. Clearance deficiencies may account for the development of autoimmunity by inducing a loss of tolerance in lymphoid tissues. Furthermore, phagocytosis of apoptotic cells may lead to a pro-inflammatory response in the presence of autoantibodies. This may sustain inflammatory conditions and the pathology found in overt lupus.