Published in

Oxford University Press, Journal of Antimicrobial Chemotherapy, 4(66), p. 834-839, 2011

DOI: 10.1093/jac/dkq526

Links

Tools

Export citation

Search in Google Scholar

The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objectives: The use of efflux pump inhibitors may be a powerful strategy to overcome transporter-mediated bacterial multidrug resistance. In the present study, we set out to investigate the potency of tariquidar, a third-generation P-glycoprotein inhibitor in clinical development, for overcoming bacterial resistance towards ciprofloxacin. Methods: Staphylococcus aureus 29213 (SA29213) and S. aureus 1199B (SA1199B), which overexpresses the multidrug transporter NorA, as well as Pseudomonas aeruginosa 27853 and Stenotrophomonas maltophilia BAA-85, which expresses SmeDEF, were exposed to ciprofloxacin in the presence and absence of tariquidar or, for comparative reasons, elacridar. Activity of both P-glycoprotein inhibitors was evaluated by determination of MICs and time-kill curves, and by quantification of uptake of ciprofloxacin into bacterial cells. Results: Activity of tariquidar and elacridar was comparable for S. aureus strains, and both dose-dependently increased susceptibility towards ciprofloxacin. Highest effects were observed for SA1199B, where the addition of tariquidar resulted in a 10-fold reduction of the ciprofloxacin MIC, while no effect was observed for P. aeruginosa. For S. maltophilia, elacridar but not tariquidar improved susceptibility. Uptake of [(14)C] ciprofloxacin and modification of susceptibility showed significant correlations (r = 0.89, P