Published in

Cell Press, Cell Host & Microbe, 6(14), p. 641-651, 2013

DOI: 10.1016/j.chom.2013.11.002

Links

Tools

Export citation

Search in Google Scholar

Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The intestinal microbiota features intricate metabolic interactions involving the breakdown and reuse of host- and diet-derived nutrients. The competition for these resources can limit pathogen growth. Nevertheless, some enteropathogenic bacteria can invade this niche through mechanisms that remain largely unclear. Using a mouse model for Salmonella diarrhea and a transposon mutant screen, we discovered that initial growth of Salmonella Typhimurium (S. Tm) in the unperturbed gut is powered by S. Tm hyb hydrogenase, which facilitates consumption of hydrogen (H2), a central intermediate of microbiota metabolism. In competitive infection experiments, a hyb mutant exhibited reduced growth early in infection compared to wild-type S. Tm, but these differences were lost upon antibiotic-mediated disruption of the host microbiota. Additionally, introducing H2-consuming bacteria into the microbiota interfered with hyb-dependent S. Tm growth. Thus, H2 is an Achilles' heel of microbiota metabolism that can be subverted by pathogens and might offer opportunities to prevent infection.