Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Mobile robot localization and mapping using a Gaussian sum filter

Journal article published in 2007 by Quang Phuc Ha, Ngai Ming Kwok, Gu Fang, Gamini Dissanayake, Shoudong Huang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A Gaussian sum filter (GSF) is proposed in this paper on simultaneous localization and mapping (SLAM) for mobile robot navigation. In particular, the SLAM problem is tackled here for cases when only bearing measurements are available. Within the stochastic mapping framework using an extended Kalman filter (EKF), a Gaussian probability density function (pdf) is assumed to describe the range-and-bearing sensor noise. In the case of a bearing-only sensor, a sum of weighted Gaussians is used to represent the non-Gaussian robot-landmark range uncertainty, resulting in a bank of EKFs for estimation of the robot and landmark locations. In our approach, the Gaussian parameters are designed on the basis of minimizing the representation error. The computational complexity of the GSF is reduced by applying the sequential probability ratio test (SPRT) to remove under-performing EKFs. Extensive experimental results are included to demonstrate the effectiveness and efficiency of the proposed techniques.