Published in

American Society of Civil Engineers, Journal of Environmental Engineering, 6(139), p. 773-780, 2013

DOI: 10.1061/(asce)ee.1943-7870.0000667

Links

Tools

Export citation

Search in Google Scholar

Biological Nutrient Removal and Fouling Phenomena in a University of Cape Town Membrane Bioreactor Treating High Nitrogen Loads

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The behavior of a University of Cape Town (UCT) membrane bioreactor (MBR) system was investigated for use in biological nutrient removal from real wastewater. The pilot plant was in operation for a period of 165 days, during which an extensive data gathering campaign was conducted. The pilot plant was started up by inoculating it with activated sludge from a nearby wastewater treatment plant, and it was fed by real municipal wastewater characterized by high organic nitrogen concentrations attributable to discharges from industrial wastewater and sporadic landfill leachate. Carbon and biological nutrient removal processes, a sludge production process, and a membrane fouling mechanism were analyzed and discussed. The organic nitrogen levels, which were higher than typical values for municipal wastewater, caused ammonification phenomena. This led to intense nitrification and denitrification activities. The pilot plant showed satisfactory efficiency in terms of average removal efficiencies for both carbon and nitrogen. However, lower efficiencies were recorded for phosphorus removal as an indirect effect of the intense denitrifying activity of the phosphorus-accumulating organisms in the anoxic tank. Membrane fouling was mainly of reversible nature, and low values of soluble microbial product were measured.