Published in

Wiley, Limnology and Oceanography, 1(56), p. 1-16, 2010

DOI: 10.4319/lo.2011.56.1.0001

Links

Tools

Export citation

Search in Google Scholar

Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore-offshore transect

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Society of Limnology and Oceanography, 2011. This article is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 56 (2011): 1-16 , doi:10.4319/lo.2011.56.1.0001. ; We investigated the patterns in bacterial growth, production, respiration, growth efficiency (BGE), and bacterial leucine respiration and C-to-leucine yield (i.e., conversion factor [CF]) along a transect off the coast of Oregon. Plankton respiration along the transect averaged 1.15 ± 0.16 mg C L-1 h-1, peaking in the coastal upwelling region. The respiration in the filtered fraction, which was dominated by bacterial biomass, accounted for 79% of the total respiration. The different approaches that we used converged to an average BGE of 13% ± 1%, with peaks of over 20% in the more productive coastal areas and values declining to below 5% toward the oligotrophic gyre waters. There was overall coherence between the various aspects of bacterial C metabolism: communities with low BGE also tended to have low growth rates and high leucine-to-thymidine incorporation ratios. The patterns in BGE were mirrored at the single compound level, and in the most oligotrophic sites, bacteria tended to quickly respire a large fraction (20-75%) of the leucine that was taken up and had the lowest C-to-leucine yield, suggesting that the patterns in bulk BGE and growth also apply to individual substrates. Bacterial growth was a function of both C consumption and BGE; these two aspects of bacterial C metabolism do not necessarily covary, and they are regulated differently. The patterns in C consumption, growth, BGE, and leucine metabolism all reflect the basic physiological response of bacteria to energy limitation due to high maintenance costs associated with life in oligotrophy. ; This work was supported by the National Science Foundation grant OCE- 0002236 to E.S. and P.d.G. and grant REN2001-5097-E/MAR of the Spanish Government to J.M.G. Writing of this manuscript was supported by grant CTM2008-03309/MAR to J.M.G. and a Visitor Fellowship of the Catalan Government to P.d.G.