Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms4192

Links

Tools

Export citation

Search in Google Scholar

Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Communications 5 (2014): 3192, doi:10.1038/ncomms4192. ; Deep-sea hydrothermal vents are a significant source of oceanic iron. Although hydrothermal iron rapidly precipitates as inorganic minerals upon mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea hydrothermal plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe-C complexes. This “microbial iron pump” could represent an important mode of converting hydrothermal iron into bioavailable forms that can be dispersed through the oceans. ; This project is funded by the Gordon and Betty Moore Foundation through grant GBMF 2609 to GJD/JAB/BMT and by the National Science Foundation through grants OCE 1029242 to GJD, and R2K grant OCE1038055 to JAB/BMT. We thank the University of Michigan Rackham Graduate School Faculty Research Fellowship Program for their support. ; 2014-08-05