Links

Tools

Export citation

Search in Google Scholar

Design Hierarchical Electrodes with Highly Conductive NiCo2S4 Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors

Journal article published in 2014 by Junwu Xiao, Lian Wan, Shihe Yang, Fei Xiao, Shuai Wang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We report on the development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional (3D) conductive scaffold for loading additional electroactive materials. The resulting pseudocapacitive electrode is found to be superior to that based on the sibling NiCo2O4 nanorod arrays, which are currently used in supercapacitor research due to the much higher electrical conductivity of NiCo2S4. A series of electroactive metal oxide materials, including CoxNi1-x(OH)(2), MnO2, and FeOOH, were deposited on the NiCo2S4 nanotube arrays by facile electrodeposition and their pseudocapacitive properties were explored. Remarkably, the as-formed CoxNi1-x(OH)(2)/NiCo2S4 nanotube array electrodes showed the highest discharge areal capacitance (2.86 F cm(-2) at 4 mA cm(-2)), good rate capability (still 2.41 F cm(-2) at 20 mA cm(-2)), and excellent cycling stability (similar to 4% loss after the repetitive 2000 cycles at a charge discharge current density of 10 mA cm(-2)).