Links

Tools

Export citation

Search in Google Scholar

Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed. © 2014 Huaping Zhu et al. ; peer reviewed: yes ; system details: This record was machine loaded using metadata from Scopus ; NRC Pub: yes