Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, (13), 2012

DOI: 10.1029/2012gc004093

Links

Tools

Export citation

Search in Google Scholar

Multiple expressions of plume-ridge interaction in the Galapagos : volcanic lineaments and ridge jumps

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q05018, doi:10.1029/2012GC004093. ; Anomalous volcanism and tectonics between near-ridge mantle plumes and mid-ocean ridges provide important insights into the mechanics of plume-lithosphere interaction. We present new observations and analysis of multibeam, side scan sonar, sub-bottom chirp, and total magnetic field data collected during the R/V Melville FLAMINGO cruise (MV1007; May–June, 2010) to the Northern Galápagos Volcanic Province (NGVP), the region between the Galápagos Archipelago and the Galápagos Spreading Center (GSC) on the Nazca Plate, and to the region east of the Galápagos Transform Fault (GTF) on the Cocos Plate. The NGVP exhibits pervasive off-axis volcanism related to the nearby Galápagos hot spot, which has dominated the tectonic evolution of the region. Observations indicate that ~94% of the excess volcanism in our survey area occurs on the Nazca Plate in three volcanic lineaments. Identified faults in the NGVP are consistent with normal ridge spreading except for those within a ~60 km wide swath of transform-oblique faults centered on the GTF. These transform-oblique faults are sub-parallel to the elongation direction of larger lineament volcanoes, suggesting that lineament formation is influenced by the lithospheric stress field. We evaluate current models for lineament formation using existing and new observations as well as numerical models of mantle upwelling and melting. The data support a model where the lithospheric stress field controls the location of volcanism along the lineaments while several processes likely supply melt to these eruptions. Synthetic magnetic models and an inversion for crustal magnetization are used to determine the tectonic history of the study area. Results are consistent with creation of the GTF by two southward ridge jumps, part of a series of jumps that have maintained a plume-ridge separation distance of 145 km to 215 km since ~5 Ma. ; This work was supported by NSF grant OCE-0926637 and OCE-1030904 to DF and KH. DG’s work was supported by NSF grants EAR- 0838461 and EAR-1145271. Additional support was provided to E.M. by the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution. ; 2012-11-30