Published in

American Geophysical Union, Paleoceanography, 1(26), 2011

DOI: 10.1029/2010pa002032

Links

Tools

Export citation

Search in Google Scholar

Evidence from the Florida Straits for Younger Dryas ocean circulation changes

Journal article published in 2011 by Jean Lynch-Stieglitz ORCID, Matthew W. Schmidt, William B. Curry
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1205, doi:10.1029/2010PA002032. ; The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years. ; We thank the National Science Foundation (grants OCE‐0648258 and OCE‐0096472) and the Comer Science and Education Foundation for supporting this research. MWS was supported by a NOAA Global Change Postdoctoral Fellowship.