Published in

Elsevier, Radiotherapy & Oncology, 1(92), p. 133-137

DOI: 10.1016/j.radonc.2008.12.010

Links

Tools

Export citation

Search in Google Scholar

Two-tier analysis of histone H2AX phosphorylation allows the identification of Ataxia Telangiectasia heterozygotes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND AND PURPOSE: Ataxia Telangiectasia (A-T) heterozygotes constitute 0.36-1% of the general population. They have a higher risk of developing several types of cancer and may be more likely to suffer side-effects following radiotherapy than the general population. Their identification is both labor- and time-consuming and the sensitivity and specificity of the methods employed has not been evaluated. This paper describes a new approach to the identification of A-T heterozygotes based on a two-tier analysis of histone H2AX phosphorylation. MATERIALS AND METHODS: We compared the T-cell phenotype after exposure to 2 Gy in nine obligate A-T heterozygotes and 17 normal donors. Examined end points were histone H2AX phosphorylation by flow cytometry 1 h after irradiation (kinase proficiency) and the residual gamma-H2AX foci by confocal microscopy 72 h after irradiation (DSB repair proficiency). RESULTS: The sequential use of these two methods results in 100% positive predictive value (PPV), 67% negative predictive value (NPV), 78% sensitivity, and 100% specificity. The overall hit rate, i.e. the ratio between the true positives plus the true negatives and the total number of observations was 85%. CONCLUSIONS: A-T heterozygotes can be identified by analysing irradiated T-cell H2AX phosphorylation level and residual gamma-H2AX foci.